Delay learning and polychronization for reservoir computing

نویسندگان

  • Hélène Paugam-Moisy
  • Régis Martinez
  • Samy Bengio
چکیده

We propose a multi-timescale learning rule for spiking neuron networks, in the line of the recently emerging field of reservoir computing. The reservoir is a network model of spiking neurons, with random topology and driven by STDP (Spike-TimeDependent Plasticity), a temporal Hebbian unsupervised learning mode, biologically observed. The model is further driven by a supervised learning algorithm, based on a margin criterion, that affects the synaptic delays linking the network to the readout neurons, with classification as a goal task. The network processing and the resulting performance can be explained by the concept of polychronization, proposed by Izhikevich (2006, Neural Computation, 18:2), on physiological grounds. The model emphasizes that polychronization can be used as a tool for exploiting the computational power of synaptic delays and for monitoring the topology and activity of a spiking neuron network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reservoir computing with simple oscillators: Virtual and real networks

The reservoir computing scheme is a machine learning mechanism which utilizes the naturally occuring computational capabilities of dynamical systems. One important subset of systems that has proven powerful both in experiments and theory are delay-systems. In this work, we investigate the reservoir computing performance of hybrid network-delay systems systematically by evaluating the NARMA10 an...

متن کامل

Stochastic nonlinear time series forecasting using time-delay reservoir computers: Performance and universality

Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional...

متن کامل

A supervised learning approach based on STDP and polychronization in spiking neuron networks

We propose a network model of spiking neurons, without preimposed topology and driven by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian unsupervised learning mode, biologically observed. The model is further driven by a supervised learning algorithm, based on a margin criterion, that has effect on the synaptic delays linking the network to the output neurons, with classification as ...

متن کامل

Development of a Model for Predicting Heart Attack Based on Fog Computing

Introduction: Various studies have demonstrated the benefits of using distributed fog computing for the Internet of Things (IoT). Fog computing has brought cloud computing capabilities such as computing, storage, and processing closer to IoT nodes. The new model of fog and edge computing, compared to cloud computing, provides less latency for data processing by bringing resources closer to user...

متن کامل

Optimal nonlinear information processing capacity in delay-based reservoir computers

Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2008